

Santé et alimentation an cœur de la vie

Liberté

Égalité

Fraternité

PRATICAL APPLICATIONS FROM TWO FRENCH NRLS OF THE NEW **EUROPEAN REGULATION 2021/808** AND THEIR IMPLEMENTATION ON FORBIDDEN AND AUTHORIZED **SUBSTANCES**

SARAF, 8th of December

COMMISSION IMPLEMENTING REGULATION (EU) 2021/808

of 22 March 2021

on the performance of analytical methods for residues of pharmacologically active substances used in food-producing animals and on the interpretation of results as well as on the methods to be used for sampling and repealing Decisions 2002/657/EC and 98/179/EC

						Acceptable coeffic	ient of variation
son of analytical m	ethods by the	performance c	haracteristics (hat have to be-	delectmond	Man function	Reproducibility CV (%)
	Confis	nation		Scorening		> 1.000 yg/kg	16 (adapted from Horwitz equation)
rhol	Quintre	Qualitative	Qualitative	Semi- quantitative	Quattorie	> 1.20 µg/kg - 1 000 µg/kg	22 (adapted from Horwitz equation)
shares	Α.	A.3	A 8	A.B.	A.3	10 – 130 µg kg	25*
a accordance with	x	х				< 10 pg kg	30 *
						* The CV (b) presented is a publicae and thould be as low as some	uskly posible.
008	х	ж				Mentification point	per technique
cc#			x				
						Technique	Identification Points
					-	Separation (mode GC, LC, SFC, CE)	1
Colors.				00		LR-M5 ion	1
iz effect/absolute overy *		х			х	Precimer ion selection at <10.5 Da mass mage	1 (indeed)
ySpecificity		х	x	x	х	LR-MS' product ion	1.5
hity*		*	x			HR-MS int	1.5
ordaess		x	x	3	x	HE-MS ² product ion	2.5

P Guichard Anses, Fougères

ORIGINS OF THE INITIATIVE

French laboratory network for the control of pharmacologically active substances

GENERAL IMPLEMENTATION WORKFLOW

VALIDATION

Example on progestagen esters in fat

Regulation	26.9.2022 EN	Official Journal of the European Union	L 248/3			
	C	OMMISSION DELEGATED REGULATION (EU) 2022/1644				
		of 7 July 2022				
	supplementing Regulation (EU) 2017/625 of the European Parliament and of the Council with specific requirements for the performance of official controls on the use of pharmacologically active substances authorised as veterinary medicinal products or as feed additives and of prohibited or unauthorised pharmacologically active substances and residues thereof					
		(Text with EEA relevance)				
		ANNEX I				
Group A Pro	hibited or unauthorised pharmacol	logically active substances in food-producing animals				
1. Substances Directive 9	with hormonal and thyrostatic a 6/22/EC (1):	action and beta agonists the use of which is prohibited	under Council			
(a) Stilben	es;					
(b) Antithy	vroid agents;					

VALIDATION

Commission

Example on progestagen esters in fat

Level of interest

Version 2.0 June 2022

EURL GUIDANCE ON MINIMUM METHOD PERFORMANCE REQUIREMENTS (MMPRs) FOR SPECIFIC PHARMACOLOGICALLY ACTIVE SUBSTANCES IN SPECIFIC ANIMAL MATRICES

melengestrol acetate

Substances	Marker residue- metabolite ^{\$}	Matrix		MMPR*
Melengestrol	Melengestrol	Kidney fat	5 ppb	
	(acetate)	Muscle	1.0 ppb	

* $CC\beta$ for screening methods or $CC\alpha$ for confirmatory methods should be lower than the value expressed in this column.

Example on progestagen esters in fat

Analytical performances

L 180/84 EN

Official Journal of the European Union

21.5.2021

melengestrol acetate

COMMISSION IMPLEMENTING REGULATION (EU) 2021/808

of 22 March 2021

on the performance of analytical methods for residues of pharmacologically active substances used in food-producing animals and on the interpretation of results as well as on the methods to be used for sampling and repealing Decisions 2002/657/EC and 98/179/EC

Classification of analytical methods by the performance characteristics that have to be determined

	Confir	mation	Screening		
Method	Qualitative	Quantitative	Qualitative	Semi- quantitative	Quantitative
Substances	А	А, В	A, B	A, B	A, B
Identification in accordance with 1.2	х	х			
CCα	x	x			
ССβ	-		х	х	x
Trueness		x			х
Precision		х		(x)	х
Relative matrix effect/absolute recovery *		x			х
Selectivity/Specificity		x	х	х	х
Stability #		x	x	x	х
Ruggedness		х	х	х	х

SARAF – 8[™] of December 2022

Example on progestagen esters in fat

Analytical performances

L 180/84 EN

Official Journal of the European Union

21.5.2021

melengestrol acetate

COMMISSION IMPLEMENTING REGULATION (EU) 2021/808

of 22 March 2021

on the performance of analytical methods for residues of pharmacologically active substances used in food-producing animals and on the interpretation of results as well as on the methods to be used for sampling and repealing Decisions 2002/657/EC and 98/179/EC

Classification of analytical methods by the performance characteristics that have to be determined

	Confir	mation	Screening		
Method	Qualitative	Quantitative	Qualitative	Semi- quantitative	Quantitative
Substances	А	А, В	A, B	A, B	A, B
Identification in accordance with 1.2	х	х			
CCα	x	X			
ССβ	-		х	x	х
Trueness		x ?			x ?
Precision		x ?		(x)	x ?
Relative matrix effect/absolute recovery *		x ?			x ?
Selectivity/Specificity		x	х	х	x
Stability #		х	х	X	х
Ruggedness		X	х	x	x

SARAF – 8th of December 2022

VALIDATION

Example on progestagen esters in fat

Analytical performance

Version 1.1, 25 November 2021 EURL Guidance Document on Confirmation Method Validation European Union Reference Laboratories supported by the

EURL Guidance Document on Confirmation Method Validation

Level of interest	Level 1 : LCL	Level 2	Level 3	Level 4
MMPR	≤ ½ MMPR	½ MMPR	MMPR	1.5xMMPR

Choice of LCL :

- as low as possible
- Where validation of the concentration of <u>0.5 times</u> the level of interest is <u>not reasonably</u> <u>possible</u>, this value may be replaced by the lowest concentration between <u>0.5 and 1 time</u> the level of interest (see § 2.2.1.2, 2.2.1.3 and 2.2.1.4 of the Annex to the Regulation).

Melengestrol Acetate

Level of interest	Level 1 : LCL	Level 2	Level 3	Level 4
MMPR = 5 ng/g	0.5 ng/g	2.5 ng/g	5 ng/g	7.5 ng/g

Experimental design

Serie 1

Matrix effect

20 different batches of matrices representative to the method application field

Serie 2 Calibration curve $(n \ge 5)$ Blank samples $(n \ge 6)$ Level 1 $(n \ge 6)$ Level 2 $(n \ge 6)$ Level 3 $(n \ge 6)$ Level 4 $(n \ge 6)$ Serie 3 Calibration curve $(n \ge 5)$ Blank samples $(n \ge 6)$ Level 1 $(n \ge 6)$ Level 2 $(n \ge 6)$ Level 3 $(n \ge 6)$ Level 4 $(n \ge 6)$ Serie 4 Calibration curve $(n \ge 5)$ Blank samples $(n \ge 6)$ Level 1 $(n \ge 6)$ Level 2 $(n \ge 6)$ Level 3 $(n \ge 6)$ Level 4 $(n \ge 6)$

VALIDATION

CCβ

Definition from the REG (EU) 2021/808

- (15) 'detection capability for screening (CC β)' means the smallest content of the analyte that may be detected or quantified in a sample with an error probability of β :
 - (a) in the case of prohibited or unauthorised pharmacologically active substances, the CC β is the lowest concentration at which a method is able to detect or quantify, with a statistical certainty of 1β , samples containing residues of prohibited or unauthorised substances;

(b) Method 2: Investigation of fortified blank material at concentration levels at and above the STC. For each concentration level 20 fortified blanks shall be analysed in order to ensure a reliable basis for this determination. The concentration level, where only ≤ 5 % false compliant results remain, equals the detection capability of the method.

CC β Melengestrol acetate in fat

Identification criteria in screening :

2 specific transitions detected above S/B = 3 @ the relative retention time (RRT) ± 1 %

@ Level 1 : LCL/STC = 0,1 x MMPR => 0.5 ng/g

CCα

Definition from the REG (EU) 2021/808

(14) 'decision limit for confirmation (CC α)' means the limit at and above which it can be concluded with an error probability of α that a sample is non-compliant and the value $1 - \alpha$ means statistical certainty in percentage that the permitted limit has been exceeded;

 $CC\alpha$

(c) Method 3: $CC\alpha = LCL + k$ (one-sided, 99 %) × (combined) standard measurement uncertainty at LCL

 $CC\alpha = CC\beta + 2.33 \text{ x } u_c$ with $u_c = combined$ measurement uncertainty at $CC\beta$

Determination $u_c = \sqrt{u_{Precision}^2 + u_{Trueness}^2}$

Precision

U_c

REG (EU) 2021/808 Requirements

Table 2

Acceptable coefficient of variation

Mass fraction	Reproducibility CV (%)
> 1 000 µg/kg	16 (adapted from Horwitz equation)
> 120 µg/kg – 1 000 µg/kg	22 (adapted from Horwitz equation)
10 – 120 μg/kg	25 *
< 10 μg/kg	30 *

Determination for melengestrol acetate

	level 1	level 2	level 3	level 4
Spike (ng/g)	0.5	2.5	5	7.5

c Determination
$$u_c = \sqrt{u_{Precision}^2 + u_{Trueness}^2}$$

Trueness

U

REG (EU) 2021/808 Requirements

Table 1

Minimum trueness of quantitative methods

	Mass Fraction	Range	
i –	≤ 1 µg/kg	-50 % to +20 %	
	> 1 µg/kg to 10 µg/kg	-30 % to +20 %	
	≥ 10 µg/kg	-20 % to +20 %	

Determination for melengestrol acetate

	level 1	level 2	level 3	level 4
Spike (ng/g)	0.5	2.5	5	7.5

$$u_{c}$$
 Determination $u_{c} = \sqrt{u_{Precision}^{2} + u_{Trueness}^{2}}$

At $CC\beta$ = Level 1

Melengestrol acetate : u_c = 16 %

CCα

Determination

 $CC\alpha = CC\beta + 2.33 \times u_c$ with $u_c = combined$ measurement uncertainty at $CC\beta$

Melengestrol acetate CCα = 0,7 ng/g

Identification criteria in confirmation

2021/808 Requirements

2 specific transitions detected above S/B = 3 Transition ratio < 40 % of deviation to the reference @ the relative retention time (RRT) ± 1 %

Melengestrol Acetate: 84 spiked samples on the range [0.5 – 7.5] ng/g

S/B > 3 for 84/84 spiked samples on both transitions	\bigotimes
RRT < 1% for 84/84 spiked samples	\bigotimes
Signal ratios below 40 % of deviation for 84/84 spiked samples	\bigotimes

Stability

From EURL Data when available

Proficiency test for gestagens in bovine kidney fat

R.H.A. van den Beld, 1.J.W. Elbers and S.S. Sterk

s	Statistical evaluation for M	ILGA in material D	
Storage temp	-80 °C	<-20°C	7 days RT
Time in freezer (days)	0	70	70
Calculated amounts (µg/kg)	4.5	4.5	4.5
	4.7	4.5	4.6
	4.6	4.7	4.5
	4.4	4.6	4.5
	4.6	4.6	4.6
	4.5	4.6	4.7
Average amount (µg/kg)	4.5	4.6	4.6
n	6	6	6
st. dev (µg/kg)	0.10	0.07	0.07
Difference	C	-0.02	-0.03
0.3σ _p		0.30	0.30
Consequential difference? Diff < 0.3	σ _p	NO	NO

Performance criteria to be validated :

Critoria	Scrooping	Confirmation			
Criteria	Screening	Quantitative	Qualitative		
Identification	∆RRT < 1 %	Δ RR	T <1%		
identification	2 signals with S/B > 3	2 signals with S/B	> 3 and Δ ratio < 40 %		
CC β	method 2 < MMPR				
CCα	method 3 < MMPR				
Trueness		2021/808 criteria	from bias at the $\mbox{CC}\beta$ level		
Precision		2021/808 criteria	from CV at the CC β level		
Matrix effect		RSD < 20 % or <rsd<sub>PRECISI</rsd<sub>	ON		
Recovery		For information			
Stability	According to the EURL information				
Specificity	Assessment	Assessment on at least 20 different blank samples			
Robustness	To be det	ermine during the develo	pment step		

SARAF – 8th of December 2022

ON-GOING PERF

ON-GOING PERF

THANK YOU

INITIAL VALIDATION OF AN « AUTHORISED SUBSTANCES » METHOD:

Method for the detection and confirmatory quantification of florfenicol residues in muscle and flesh matrices using LC-MS/MS

On-going performances

2021/808 Validation

AUTHORISED SUBSTANCES

Example on total florfenicol residues in meat

Analytical methodology

COMMISSION REGULATION (EU) No 37/2010

of 22 December 2009

on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin

(Text with EEA relevance)

						1
Florfenicol Sum of florfenicol and its metabolites measured as florfenicol-amine	Bovine, ovine, caprine	200 µg/kg 3 000 µg/kg 300 µg/kg	Muscle Liver Kidney	Not for animals from which milk is pro- duced for human consumption. Not for animals from	Anti-infectious agents/Antibiotics	
	Porcine	300 µg/kg 500 µg/kg 2 000 µg/kg 500 µg/kg	Muscle Skin and fat Liver Kidney	which eggs are pro- duced for human consumption.		
		Poultry	100 µg/kg 200 µg/kg 2 500 µg/kg 750 µg/kg	Muscle Skin and fat Liver Kidney		
		Fin fish	1 000 µg/kg	Muscle and skin in natural proportions.		
		All other food producing species	100 µg/kg 200 µg/kg 2 000 µg/kg 300 µg/kg	Muscle Fat Liver Kidney		

- Group B.1.a according to
 <u>Regulation (EU) 2022/1644</u>
- Authorised substance (antibiotic) present in Table 1 of <u>Reg (EU) No</u> <u>37/2010</u>

VALIDATION

 4 different MRLs are set in muscle (µg/Kg):

¹ : Poultry and all other food producing species (OFPS) ² : Bovine. Ovine and Caprine species

Levels	Level of interest	Level 1: LCL	Level 2	Level 3
Authorised substances	MRL	[0.1-0.5] x MRL	MRL	1.5 x MRL

Choice of LCL :

- Equal to 0.1 x MRLs
- Where validation of the concentration of 0.1 times the level of interest is not reasonably possible, this value may be replaced by the lowest concentration between 0.1 and 0.5 time the level of interest (see § 2.2.1.2, 2.2.1.3 and 2.2.1.4 of the Annex to the Regulation).

Florfenicol:

Matrices	MRLs	Level 1: LCL	Level 2	Level 3	Level 4	Level 5
Poultry OFPS	100 µg/kg	10 µg/kg	20 µg/kg	50 μg/kg	100 µg/kg	150 µg/kg
Bovine, Ovine, Caprine	200 µg/kg	20 µg/kg	40 µg/kg	100 µg/kg	200 µg/kg	300 µg/kg
Porcine	300 µg/kg	30 µg/kg	60 µg/kg	150 µg/kg	300 µg/kg	450 μg/kg
Fish	1000 µg/kg	100 µg/kg	-	500 µg/kg	1000 µg/kg	1500 µg/kg

Day 1: Specificity

Evaluation requirements: <u>n≥20 per meat categories</u>

Day 2: Matrix effects

Evaluation requirements: <u>n≥20 for the scope of the method</u>

Days 3 to 5: Validation

D3 Calibration curve (n≥5)	D4 Calibration curve (n≥5)	D5 Calibration curve (n≥5)
Validation standards	Validation standards	Validation standards
Level 1 (n≥6)	Level 1 (n≥6)	Level 1 (n≥6)
Level 2 (n≥6)*	Level 2 (n≥6)*	Level 2 (n≥6)*
Level 3 (n≥6)	Level 3 (n≥6)	Level 3 (n≥6)
Level 4 (n≥6)	Level 4 (n≥6)	Level 4 (n≥6)
Level 5 (n≥6)	Level 5 (n≥6)	Level 5 (n≥6)

Day 1: Specificity

Evaluated on 84 different batches of matrices (n≥20 per meat categories)

21 poultry + OFPS ; 23 bovine + ovine + caprine ; 21 porcine ; 21 fish

- Absence of interference in matrix blanks at Tr of interest (on all batches)
- 1 positive sample (bovine) was found at Conc. < 0.1 MRL level
 => sample not included in validation design

Poultry sample (MRL = 100 μ g/kg) \rightarrow

- No interferences in blank samples
- No Veterinary Drug Residues from Florfenicol

SARAF - 8th of December 2022

Day 2: Matrix effects

Evaluated on 30 differents batches of matrices representative of the scope of the method including at least 5 per meat category ($n \ge 20$ for the scope of the method)

CV ≤ 20% No matrix effects within or between species is observed when IS is used

Possibility to validate different matrices simultaneously within the same category or between categories.

Days 3 to 5: Validation (x4 meat categories)

]	Number of					
	replicates	Fish	Porcine	Bovine. Ovine. Caprine	Poultry & OFPS	
]]	1 (injected twice)	0	0	0	0	CS0 : 0.0 MRL
]	1 (injected twice)	100	30	20	10	CS1 : 0.1 MRL
Colibration our co	1 (injected twice)	-	60	40	20	CS2 : 0.2 MRL
	1 (injected twice)	500	150	100	50	CS3 : 0.5 MRL
	1 (injected twice)	1000	300	200	100	CS4 : 1.0 MRL
	1 (injected twice)	1500	450	300	150	CS5 : 1.5 MRL
	7	100	30	20	10	VS1:0.1 MRL
Precision	7	-	60	40	20	VS2 : 0.2 MRL
	7	500	150	100	50	VS3 : 0.5 MRL
] CCα & CCβ	7	1000	300	200	100	VS4 : 1.0 MRL
] '	7	1500	450	300	150	VS5 : 1.5 MRL

CS : Calibration Standards

VS : Validation Standards

LABERCA anses

Validation against MRLs

Days 1 to $3 \rightarrow$ Poultry & OFPS Days 4 to $6 \rightarrow$ Bovine, Ovine, Caprine Days 7 to $9 \rightarrow$ Porcine Days 10 to $12 \rightarrow$ Fish

 $\textbf{CS} \rightarrow \text{composed of 7} \neq \text{matrices each days (pool)}$

 $\textbf{VS} \rightarrow \neq \text{from those used in CS composition}$

21 matrices per meat category x 4

$CC\beta$: Definition from the REG (EU) 2021/808

- (15) 'detection capability for screening (CC β)' means the smallest content of the analyte that may be detected or quantified in a sample with an error probability of β :
 - (b) in the case of authorised substances, the CC β is the concentration at which the method is able to detect concentrations below the permitted limit with a statistical certainty of 1β ;

Determination acording to Method 2 (2.7.2.b):

2021/808 requirement: CC β must be below the MRL

- 2. For <u>authorised substances</u>, a maximum β error of 5 % shall be ensured. The CC β shall be calculated as follows:
 - (b) Method 2: by investigation of fortified blank material at concentration levels below the permitted limit. For each concentration level 20 fortified blanks shall be analysed in order to ensure a reliable basis for this determination. The concentration level, where only ≤ 5 % false compliant results remain, equals the detection capability of the method.

AUTHORISED SUBSTANCES

100

50

0

anses

BERCA

36

38

40

42

44

Time, min

46

48

5.0

5.2

VALIDATION: STRATEGIC DECISIONS

VOL_Pool_J1_SE1-1-Florfénicol amine 1 (Standard) 248.2/230.0 - D:\Analyst Data\Projects\19QD_PhenicolDa.. Area: 1.583e4, Height: 1.826e3, RT: 4.35 min

$CC\beta$ for FFA in Poultry & OFPS

Poultry sample MRL = 100 μg/kg

 $\beta = 5\% \rightarrow 1/21$ false neg. tolerated

- S/N ≥ 3 for 21/21 spiked samples at 0.1 MRL for both transitions
- RRT < ±1% for 21/21 spiked samples for each levels (0.1 to 1.5 MRL)
- Relative ion ratio < ±40 % for 20/21 spiked samples at this level

 $CC\beta = Level 1 = 10 \mu g/kg$

54

CCα: Definition from the REG (EU) 2021/808

(14) 'decision limit for confirmation (CCa)' means the limit at and above which it can be concluded with an error probability of a that a sample is non-compliant and the value 1 - a means statistical certainty in percentage that the permitted limit has been exceeded;

Determination acording to Method 2 (2.6.2.a.ii):

2021/808 requirement: CCα must be as close as possible to MRL and above MRL

- 2. For authorised substances, the CCa shall be calculated as follows:
 - (a) For <u>authorised</u> substances in matrix/species combinations for which an MRL or ML has been set:
 - (ii) Method 2: CCa = MRL (or ML) + k(one-sided, 95 %) × (combined) standard measurement uncertainty at the MRL or ML.

For authorised substances, depending on the validation experiment (and its respective degrees of freedom) the t-distribution might be reasonably applied, or – if the Gaussian distribution (one-sided, $n=\infty$) is taken as a basis, a k-factor of 1,64 shall be used.

$$CC\alpha = MRL + 1.64 * u_c$$

$$CC\alpha_{max} = MRL + 1,64 * u_{c_{max}}$$

$$u_{c_{max}} = \sqrt{\left(CV_{R_{max}}\right)^2 + \left(u_{b_{max}}\right)^2}$$

 $u_{c_{max}}$: maximum uncertainty at the MRL level (µg/kg)

 $CV_{R_{max}}$: maximum allowed intermediate fidelity CV at MRL level $u_{b_{max}}$: maximum bias uncertainty allowed at the MRL level

$u_{b_{max}} = rac{maximum allowed bias at the MRL level}{\sqrt{3}}$

MRL (μg/Kg)	Reproducibility <i>CV_{Rmax}</i> (%) (Reg 2021/808 chap. 1.2.2.2)	Trueness Bias max (%) (Reg 2021/808 chap. 1.2.2.1)	u _{bmax} (%)	u _{cmax} (%)
10 ≤ MRL < 120	25**	20	12	28
120 ≤ MRL < 1000	22	20	12	25
MRL ≥ 1000	16	20	12	20

Exemple : at MRL = $100 \mu g/kg$

 $u_{c_{max}}=28\%=28\,\mu g/kg$

$$CClpha_{max} = 100 + 1.64 \ * 28 = 145.92 \ \mu g/kg$$

* according to the rectangular distribution law defined in ISO 11352: 2012

** The CV (%) presented is a guideline and should be as low as reasonably possible (1.2.2.2. of Reg 2021/808)

	Concentration		Reproducibility		Trueness				
Meat categories	levels (μg/Kg)	n	CV _R (%)	CV _R max (%)	CV _R (µg/kg)	u _b (%)	u _b max (%)	и _b (µg/Kg)	(µg/Кg)
Daultar & OEDC	10	21	27.9	25*	2.79	6.10	12	0.61	2.86
	20	21	15.7	25*	3.14	3.42	12	0.68	3.21
POULLY & OFPS	50	21	2.84	25*	1.42	0.93	12	0.47	1.50
MRL = 100 μg/kg	100	21	2.43	25*	2.43	0.53	12	0.53	2.49
	150	21	3.78	22	5.67	1.23	12	1.84	5.96

* The CV (%) presented is a guideline and should be as low as reasonably possible (1.2.2.2. of Reg 2021/808)

 $CC\alpha = MRL + 1,64 * u_c$ $CC\alpha = 100 + 1,64 * 2.49$ $CC\alpha = 104.08 \,\mu g/kg < CC\alpha \max = 145.92 \,\mu g/kg$

Performance criteria to be validated :

Critoria	Scree	Confirmation			
Citteria	Qualitative	Quantitative	Quantitative		
	ΔRRT	⁻ <1%	ΔRRT < 1%		
Identification	2 signals w	with $S/N > 3$	2 signals with S/N > 3		
			Δratio < 40%		
CCB	meth	nod 2			
ССр	CCb <	CCb < MRL			
			method 2		
CCα			close to MRL &		
			below CCα max		
Trueness		2021/808 criteria	2021/808 criteria		
Precision		2021/808 criteria	2021/808 criteria		
Matrix effect	F	RSD < 20% or < RSD _{PRECISI}	ON		
Recovery	For information				
Stability	According to the EURL information				
Specificity	Assessement	on at least 20 different	blank samples		
Robustness	To be dete	rmine during the develo	opment step		

QC for Control Plans:

	Screening	Confirmation	Batch acceptation
			Absence of the compound
QC 1	Matrix blank	Matrix blank	ISTD detection
			No interference
00.2	QC 2 0.5 MRL /	1	ISTD & Analyte detection
		1	Qualitative with screening identification criteria
003	00 3	1 MPI	ISTD & Analyte detection
	1	1 MRL	Projection on control chart

QC for Monitoring Plans:

	Screening	Confirmation	Batch acceptation
			Absence of the compound
QC 1	Matrix blank	Matrix blank	ISTD detection
			No interference
QC 2 CCβ	668	CCR	ISTD & Analyte detection
	ССр	ССр	Qualitative with screening identification criteria
QC 3	1	1 MPI	ISTD & Analyte detection
	I	1 MIRL	Projection on control chart

AUTHORISED SUBSTANCES

CONCLUSION

THANK YOU

